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Abstrllct-This pa~r deals with th.: electromagneto-elastic problem of a fixed ended conducting
plate of finite width with a through crack under a uniform ekctric current fiow and a constant
magnetic field. The study is based on Mindlin's theory of plate bending. The current fiow is disturbed
by the presence of the crack and the twisting moment is caused by the interaction between the
magnetic field and the disturbed current. Fourier transforms are used to reduce the e1ectromagneto
elastic problem to one involving the numerical solution of a system of simultaneous Fredholm
integral l-quations. The problem concerning the electric current density field is alst) solved and
reduced to a Fredholm integral equation of the second kind. The singular character and the detailed
structure of the electric current densities and the stresses ncar the ends of the crack arc determined
in dos..-..l forms. Numerical results arc given for the twisting moment intensity factor and the shear
fIlm: intensity factor for several values of the geometrical parameters.

INTRODlJCTION

Cracks in conducting materials under electromagnetic loading arc a major problem in the
structuml design of the superconducting devices. By design. the components of the super
conducting structurcs arc most often used in environments with large electric currents and
strong magnetic liclds. Therefore. a better understanding of cracks under electromagnetic
loading conditions is needed to guide the structural design and integrity assessment of the
superconducting structures. The stress intensity factor approach or linear elastic fracture
mechanics has proved to be very successful in predicting the unstable fracture of brittle
solids (Murak:tmi. 1986). When cmcked conducting materiuls are subjected to electric
current flows and magnetic fields. the sume approach is expected to apply. Considerable
work has been done to determine the stress field around a tinite crack in an elastic conducting
strip under n uniform electrie current now nnd a constnnt magnetic field (Shindo and
Takeuchi. 1988). The crack disturbs the current llow und unti-plune shear stresses are
caused by the interaction between the m~lgnetic field und the disturbed current.

The present paper pn.:sents an investigation of the stress distribution in a conducting
Ibt plate or tinite width containing a tlnite crack when the plate is subjected to an electric
current tlow and a magnetic field. The current tlow and the mugnetic field are uniform and
perpendicular to the crack surl~tce. and the crack and the plate surfaces are electrically
insulated. The study is based on Mindlin's theory for the flexural motion of plates in which
the three physical boundary conditions of vanishing bending moment. twisting moment.
and transverse shear force cun be satisfied individually at the crack edge (Mindlin. 1951 ;
Embley and Sih. 1973). First. application of the Fourier transform reduces the problem of
the electric current density field to the solution of a pair of duul integral equutions (Shindo
and T~lkeuchi. 1988; Sneddon. 1951). These equations are solved by using an integral
transform technique and the result is expressed in terms of a Fredholm integral equation
of the second kind. Next. theelectromagneto-elastic field is treated. The interaction between
the magnetic field and the disturbed electric current gives rise to an electromagnetic twisting
moment to the cracked conducting plate. A solution of the crack problem is obtained by
the method of dual integral equations and the result is expressed in terms of a system of
simultaneous Fredholm integral equations. The singular parts of the current densities.
moments and shear forces are determined in closed elementary forms. Numerical solutions
are obtained for the twisting moment intensity factor and the shear force intensity factor.
and are displayed graphically as the geometrical parameters are varied.
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STATE:\IE:\T OF THE PROBLEM A:\D ELECTRIC CLRRE:\T A:\ALYSIS

We consider an electrically conducting elastic plate of thickness 211 and width 2/ with
tixed ends containing a through crack of length 2£1. The coordinate a.xes x andy are in the
middle plane of the plate. the ;-axis is perpendicular to this plane. and the center of the
crack is taken as the origin O. as shown in Fig. I. The cracked conducting plate is permeated
by a static uniform magnetic field of magnetic induction B" normal to the crack surface. A
steady electric current flow passes through the plate. and is uniform and perpendicular to
the crack surface. They component of the undisturbed electric current density vector Jc is

( I)

where l,. is a constant with the dimension of current density. The current flow is disturbed
by the presence of the crack and the twisting moment is caused by the interaction between
the magnetic tield and the disturbed current.

The electric potential <1>c(x• .1') is

(2)

when: (J is the electric conductivity. The disturbed electric potential function (Pc (x. .1') is
g\lverned by the following Laplace equation:

(3)

The nontrivial components of the electric current density vector .J arc

(4)

when: i,. i,. arc the x. y components of.J and a comma denotes partial ditlcrentiation with
n:spect to the cooruinate.

The problem is solved for the case of electrically insulated crack and pl"lte surfaces.
The eb:tric current uensity at the ends)' = ± I is assumed to be i, = i c . Ree~llIse of the
assumeu symmetry. it is sullicient to consider the problem for 0 ~ x < %. 0 ~ Y ~ lonly.
Therefore the dectril.: boundary conditions arc given as:

(Pc.,' = l.la (y = O. 0 ~ x < a).

lfJ.=O (y=O, a~x<oc).

z

rig. I. A conducting platc with a through cr;lck.

(5)
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CPo.•' = 0 (y = I, 0 ~ X <~). (6)

A Fourier transform is applied to eqn (3) and the result is

"i"CPc = : {A I (s) exp ( - sy) +A 1(S) exp (sy)1' cos (sx) ds.
7t ()

(7)

where A I (s) and A ~(s) are the unknown functions to be determined later. The boundary
conditions (6) lead to the following relation between unknown functions:

A 1(S) = exp ( - 2sl)A I (s). (8)

Making use of the mixed boundary conditions (5), we have a pair ofdual integral equations:

iL ~
sA I (5) sinh (.I'I) exp (-.I'I) cos (sx) ds = - -4c

u a
(0 ~ x < a).

r(A I (.1') cosh (.I'I) exp (-.I'I) cos (5X) d.l' = 0 (a ~ x < Y.;).
Ju

(9)

The solution of the dual integral equations (9) may be obtained by using a new function
11(0 (Shindo and Takeuchi, 19l)X) and the result is

7tica~eXP(s/)il 1/' •
A I (.1') = - I I '-h(Oiu(.wO d".

411 cos 1 (.I') II

( 10)

where J u( ) is the zero-order Bessel function of the first kind and 11(0 is the solution to the
following fredholm integral cquation of the sccond kind:

( 11)

whose kernel being symmetric in , and 'I is

( 12)

The singular parts of the current densities in the neighborhood of the cra..:k tip are
obtained as

ia u
J, - -(.:;---)1'3' h( I) sin (0 I /2),_'1

i a l1

i,_ - (2~ dii ~ h( I) cos (0 I /2),

where r I and () I are the polar coordinates defined as:

( (3)

( 14)
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ELECTRO\llAGNET0--ELASTIC ANALYSIS

The electric current density 1, and the magnetic induction B,) in the y direction induce
the electromagnetic body force B"l, in the =direction and the twisting moment operates
the cracked plate. The electromagnetic twisting of a conducting plate with a through crack
using the Mindlin's theory (Mindlin. (951) is considered. In this theory. the rectangular
components of the displacement vector are given by

II, = x}<p,(x,.xJ.

II} = <P}(XI.XJ. ( 15)

where x I = X. X~ = y. x} = =are the rectangular Cartesian coordinates. Throughout this
section. repeated indices imply the summation convention of Einstein. Greek indices take
values in the range (I. 2). and <p} is the normal displacement of the plate and <P, are the
rotations of the normals about x,-axes. The bending and twisting moments can be expressed
in terms of <P, as

(16)

where D = 41Ih'/ {3( I - I'n is the tkxural rigidjty of the plate. II is the shear modulus of
elasticity and v is the Poisson's ratio. The shear forces Q, and Q. per unit length of the plate
are given hy

( 17)

where the shear coellicicntl..:~assumes the value 7t~/12.

Making use of eqns (16) and (17). the three equations of motion heeome

(I H)

The transverse shear ctfect is associated with S = 6D/7t~tLlI. For a traction-free crack. the
quantities ,\;f~, and Q~ must each vanish forlxl < (/ and y = O. Hence the mixed houndary
conditions may be expressed as follows;

,H~2=O. (p,=O, cP}=O (y=O, (/:S;;X<OCi),

(p,=O. (p,=O (y=/. O:S;;x<x.).

( 19)

(20)

(21 )

A Fourier transform is applied to egns (18) and the solutions in a reet.lllgular Cartesian
coordinate system (x. y. =) arc

+ {- C,(s) + C(s)(2Ss-Yn exp (-sY)l

+4;,(s)(II/7t) ~[B, (.1') exp {i.(s)y} - B ~(s) cxp {- ;,(.1') y} 11 cos (sx) ds

2 (ahBn) r' . . .
+~ -40- In [(-2S-RS'S"+4Ssy-r)exp(-sy)
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- (2S + 8S;s; +4Ssy+y;) exp {-s(2/ - y)}

+sH~(s)(2Ss- y) exp ( -sy)

-sH, (s)(2Ss + y) exp (sy)

+2sHAs) sinh (sy)

+ 2;.(s) H" (s) sinh {;.(s)y}]A I (s) cos (sx) ds,

., flO
¢, = ~ Jo [{ -SCI (s) - C;(s)(1 +2Ss; +sy)} exp (sy)

+ {sC J(S) - C4 (s)( 1+ 2Ss; -sy)} exp (-sy)

+ 4s(h/rr) ;[B I (.I) exp {I.(s)y} + Bz(s) exp{ - ),(.1)y}]] sin (.Ix) ds

2 ((1I1B o) flO, 1 " 1
+~ 4D Jo [(6Ss+8S"s--2(1+2Ss")y+sY"}sexp(-sy)

{ , 1 ' '} 1 { }- 6Ss+8S"s- +2(1 +2Ss")y+sy- -exp -s(2/-y)
.I

- fh(s)(1 +2Ss; -.1'.1') cxp (-sy)

-/(.1')( 1+ 2S.I'z +.ry) cxp (.1'.1')

+ 2.1'lIA.I') cosh (.I'y)

+ 2.1'11.,(.1') cosh {i.(.I')y} III I (.1') sin (.I'x) dol',

cl}: =2f' [(C I (.I')+C;(.I')y}exp(.I'y)
rr n

+ (C,(.I') + C(.I')y} exp (-.1'.1')1 sin (.I'x) dol'

2 (alllJn) fL. [ r
Z

+ - ---- '-; [exp ( - .1'.1') + cxp {- .1'(2/ - y)}J
rr 4D II .\

+ y{ f1h(.I') cxp (-.1'.1') + HJI) c:xp (.I'y)}

- 2/1A.I') sinh (sy)JA I (.1') sin (.Ix) dol.
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(22)

where B I (.I), B ~(.I') and C I (.I), Cz(s), CJ(s), C4(.1') arc the unknowns to be solved, and ;,(.1)
and /lis), /lh(s). /1,(.1'), HAs) arc given in Appendix A.

Making usc or the boundary conditions (19)-(21) renders

s{ C1(.1') +CJ(s)} +2C ~ V +Ssz){ Cz(s) - C4(s)}

-;.(s)(2hjrr)Z{B ,(s)-Bz(s)} = O.

-.I' {cxp (s/)C 1(.1') +exp (-s/)C I(S)}

- (.1'1 + 2Ss~) exp (sl)C ~(s) + ( -.1/+ 2Ss~) exp ( -sI)C4 (s)

+ ;.(s)(211/rr) ~ [cxp {I.(.I') I }B 1(.1') - exp {- ;,(.1')1} Bz(s)] = 0,

- .I' {exp (sl)C 1(.1') - cxp ( - sl)C1(s)}

- (I +.1'1 + 2Ssz) exp (sl)C~(s) - (I -.I'I + 2SsZ) exp ( -sI)C(s)

+s(211/rr) ~[B I (.I') exp [;.(.1')1} + Bz(.I') exp {- ;,(s)/}] = O.

exp (s/)C 1(.I') + exp ( -s/)C1(.1') + I {exp (s/)C ~(s) + exp ( - sl)C4(S)} = 0, (23)
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(
ahBo)fC •= 45 4D II F 1(.1')1'1 I (.1') Sin (sx) ds (0 ~ X < a).

I" D,(s)sin (sx)ds = 0 (a ~ x < x). (24)

(
(1hBn) I(=40-- II Fz(s)A 1 (.1') cos (sx) ds (0 ~ x < a).

I'Dz(s)cos(.I'x)d.l' = 0 (a ~ x < x;).
o

(25)

Equations (24) and (25) arc the simultaneous dual integral equations and the functions
1:,(.1') (i. j = 1.2) and FtC,·) (/ = 1.2) arc given in Appendix B. The unknowns D 1(.I') and
/)z(.I') arc related C,(.I') (i = I 4) as follows:

/)1(.1') = ('1(.1')+('\(.1').

/)1(.1') = ('1(.1') - C(.I'). (26)

In order to solve the simultaneous dual integral equations (24), (25), we introduce the
representations:

(27)

where J I ( ) is the first-order Bessel function of the first kind. The second eq uations of (24)
and (25) arc satisfied identically by the integral representations (27). If we now substitute
eqns (27) into the first eqlwtions of (24) and (25). after some manipulations. we have the
following simultaneous Fredholm integral equations of the second kind:

The kernels KiI(~' 1f} (i = I. "2;.i = 1-3) take the forms:



Elt:t:tromagnt:tit: twisting of a Mindlin plaIt:

I' -~ I "It. F.,(/) J(")J(~)d",p('; • .,) = - ...(~c)" I ., I')' I I'; 0 I~ I.
n +exp( -_f fa

r (" ~) 1-\' (-~ 1'1'- F~(t) J ( ")J (~)d""\ .:: ... = - ------ I-I.) 0 ---------.-- te" } fl. I.
o - • :!(I+l') '>. n I+exp(-:!Ifla) n ~ i .

(:!9)

(30)

wheref",(t).f,~(t).f~,,(t).f~h(t)and F.,(t). F,,(t) are given in Appendix C.
The singular parts of the moments and shear fon:es in the neighborhood of the crack

tip C,1O be determined from the asymptotic solution expressed in terms of a set of polar
coordinah:s r I ,tnd IJ I_ The linal results are

[

At" ]
1'1, •.

M...
(31 )

(3:!)

The twisting moment intensity 1~lctor k ~ and the shear force intensity 1~lctor k J may be
defined as

k~ = lim ({2(x-a)} 11M,.,(x.0)]
\. -"0 t

(33)

k.l = lim [{2(x-a)} 11Q,(X.0)]
\. ,... u t

(34)

NUMERICAL RESULTS AND DISCUSSION

In order to evaluate the twisting moment intensity factor k 1 and thc shcar forec intcnsity
factor k J it is nl."Cessilry first to numerically solve the Fredholm intcgral equation (II) for
h(tf) and the simultaneous Fredholm integral equations (2M) for t/l1(tO. t/l1(tf}. Figure 2
exhibits the variation of the norm,llized twisting moment intensity factor k 11B"Jua 7 1 against
the fla ratio. The Poisson's ratio \' is taken to be \' = 0.3. k11BnJ nam incrcases more rapidly
with the fla ratio when thc hla ratio is incrcilsed. The effect of the Poisson's riltio \' on the
twisting moment intensity factor is shown in Fig. 3 for hla = 0.5. A smaller value of t' tends
to increase k1IB"J"a7, 1 for a given fla.

Figure 4 shows a plot of the normalized shcar force intensity factor k.ll BnJna s,1 in egn
(34) versus the fla ratio for l" = 0.3 and hla = 0.25. 0.50. 0.75. It is seen that the k J values
increase at first reaching a maximum with the fla ratio. and approach the values for fla = 00.

$AS 29:23-0
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c
-'as 0.10 t----V'---+-:::>""""'----r--___j--...

0.05~__f'_+-+----b-""""":::.r_--___j

0.0

Fig. 2. Twisting moment intensity factor k:1 BoJo" 7 : versus Ij" for hla = 0.25.0.50 and 0.75.

Decreasing plate thickness !zla tends to lower the k 3 value. As the ratio !zla ..... 00 and the
ratio Ila ..... 00, k J tends to the solution

(35)

The stress intensity factor of an infinite medium with a finite crack under electromagnetic
anti plane shear load is given by (BuJu/4)a"1 (Shindo and Takeuchi, 1988). The she'lr force
Q,. per unit length of the plate is defined. in terms of the stress component, as

I
II

Q.I' = . (1.. : d=.
-II

(36)

Making use of eqn (36), the stress intensity factor (BuJu/4)aJi1 may be converted to the
following shear force intensity factor:

o20r-----,---.....----r-----,

200

050

15.05.0

005t--f+---t".e----+----~--~

0.15 r----+----+--~.,.....:=.+--__f

h/a=0.5

...
o
-'as 0.10 ~---+,f_-__::;...+<===----I__--_l

100
lIa

Fig. 3. Effect of Poisson's ratio von twisting momenl intensily factor k:1 BoJon 1.1 for hla = 0.5.
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1';--
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4
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0.0 5.0 10.0
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Fig. 4. Shear force intensity factor kJ/BoJoll"l versus I/a for h/a = 0.25.0.50 and 0.75.

(37)

which agrees with eqn (35).
In conclusion. the c1ectromagneto-elastic analysis of a conducting plate of finite width

with a through crack under a current flow and a magnetic field has been shown in this study.
The results are expressed in terms of the twisting moment intensity factor and the shear
force intensity factor. It is found that the twisting moment intensity factor increases with
the plate-width to the cmck length mtio I/a. depending on the perturbation of the electric
current field. the plate-thickness to the crack length ratio It/a and the Poisson's ratio v. The
shear force intensity factor is also given as a function of the ratio I/a for different ratios of
It/a and v = 0.3. and the results depend on the perturbation of the electric current field. The
larger values of the parameters It/a and I/a will give the worst scenario for design purposes.
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APPENDIX A

A(S) = {sl + (n/2h)2} "2, (A I)

If (f) = _/{_~__ - ~} __I-
• . tanh (.~/) s If••(s)'

[
sinh (..t(s)/} , 'J 1If.ls) = ),(s)If.(s) . h I + 2( Y, +4 Y;s') '-Y"

Sin (s) _ ,s·

If,(s) = 1f.(S)-(~ +4y,)(1 +exp(-2-.ff)},

IfAs) = {{ If.(s) - (~ +4 Y.)}{ I +exp (- 2f/)} + ¥exp (-!sf)] I-exp\ -!sl)' (A2)
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2;.(,) {SI' t I
HJ,,(s)=cxp;i.(s)t:+ . [cxp:;.(.s)/:-cxp(s/)] -;--h-I--(2y,r~l)cosh(sl)l-:--h-I'. (A.'J

} Sin (.,) J Sin (S)

The quantity Y, stands for

6D
Y, = It:!'h'

APPENDIX B

. (' It): • J {2S:} cxP: -2;.(s)/;
I,,(s) = - :,- -;-':'-'-.--.' + -,-, I ~'. '.

-" 1.(.,),1.(.')+'" 1.1.» I-exp ,-_1.(.,)/,

-IS,: [G.'(S) ][ I stanh (s/)cxp [:S-i,(.,):/I]+-- -. ;1-cxp(-2s/);-I-----~·_··-------,.~-,-. ,
I G,(s) I+cxp(-_sl) l-exp,-_I,(s)/,

(,,(5) = (!!..): _._._05__, +O_V)[2S,:c--cx.c;P_(_-_2_S:=-I)--;:-
. 2h I.(.,'):~(s)+s;' l+c,'!l(-2s/)

," ( , 2) exp; -2i.(,,)1) ] '+,- 2505'+ _.- _ .. _ .. _--;-_.. +2(1-1')5,,-
,1,(,,) I - I' I - cxp : - 21.(.,)1)

[
'e.xp!:s-i,«);/1 G:(s) {1;lt1h (Sll}x --- - _ 'Ianh(,,/)-l' + ....-

i,(.,)[ I - c.xp : - V,(')I) I ' , (i ,(,) 1

2sl); lJ

, , '{ s } cxp: -2;'(.,)1 -I"+' 'A«)'.. +<, ... .. -- + .... . ...
-I.., . I i.(s) I ..·cxp : - 2i.(s)1) n1+ cxp ( - 2s11}

[ '. J'[" " , J(,,(.,'), . ~,' ~',: ,,1.("1;'+,,,, ,. ',' ', ..x. ,l-cxp(-_-,I)j-I _.\.' +1- , cxp [,.'-1.(.,) ,liS, t,lllh (.•/) ,
(, ,(s) ,,(s)

, c,xp(:s-i.(,,)}/1 J G,(,,) [ ,
+25,' -:'-~-:',{tanh (s/)-I} +(1- v) _.'-..... 2s[(2Sr+ I) tanh (sl)-sf}

I -cxp , - _1.«)1 I (, ,(,.)

.'. , , cxp l:s - ;'(s))Il, ~ I J
-25"-[[/.(.<);' +rl ;-·('1.. ··.. · ---"-':';;----/'1 \ I -exp (-_,,1)j tanh C,l) .

1.(.,) -exp \ - ':/.(5) I

tanh (51) s
21 [ I J

G ,IS) = sf) 1- t;lf1 h(.,1) } - 2.'>S2 - I + 25," -;--:-~h''''j7(~/l - ;--: 1- '-,-I-i~-(.I' cxp ((i.(s) -sll],
,I.C'llan ',1..') j 1.(.') 1,1111,/..,) j

(BI)

(j ,(s) = ,,/[: I +cxp ( - 2,,1): -Ianh (sl): I -exp ( - 2sl):I

[
, ,tanh (sl) ]

- I 1-exp (- 2,1)' 2Sr + I - 2Ss c·_.. ·.. ..,,,. .
, f ~(s) t;lOh {A.(s)t:

{
E,(S)}

F,(.,) = -IS l-cxp(-2,1)+---- .
E,(s)

{
E,Is) "I} 2

F,(.<)=RI -'--+ cxp(-2'!)--:I-cxp(-2,!)},
E,(s) I-cxp(-:!sl) 05

(H:!)

(B3)
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£, (s) = A(.flll-exp (- 2A(.f)l})£,.(.,·) +2S.f'[1 +exp: - 2A(S)1) I: 1-exp (- 2sl)~,

, , .,. I' {SI }{ .fl£,(5) = ;.(sJ{I-exp, -~4f) ,) ~h--I -I -h--I
tan (s) tan (s)

{
051 }£,ls)="2s1 -h--I -I [s',I-exp(-2s/):

tan IS)

-j.(s)exp[[j.(J)-s:/HI-exp: -2j.Cnt;l]exp[ - (J+j.(s):IJ,

{
l +exp (-!.,'/) }'

£,.(s) =sl --h-I--l+exp(-"2sl) -(25r+I):I+exp(-2sl)}.
tan (s)

APPENDIX C

/.() ('m)' I { 21=} exp: -2). ..(I)(Iu).: 45,,1= [GJI) 'I ., 1 ' ], I = - - + -- + -- --' -ex (- I 'a)· - I. • 2/r A,,(I)(A,,(I)+I} )..(1) I-exp: -2).,,(t}(la)} (I/a) G,(t} , . P -, I

(B~)

(B5)

[
I /tanh (II/a) exp !:i-l,,(tl} //<11]x - ~--_.---~-~-_ ..__.

I +exp( -211/a) ;.,,(I)[I-exp :2j... (I)I/<I:! '

. (IW)' I [., • exp( -211/a)1,,(1) =--._--~ ...-_ .. +(1-1') 5 I' ..- .....----
. 2/r j.,,(t}:j.,,(I)+I:: ~" I+cxp( 2il/<I)

1 (., , .. 2) cxp: - 2j.,,(0Ifa: J
+ l;;(i) -S"I' + I _ v I ':':cxp{':" 2j.;,(I){a:

., I ··r Icxp[}i-j."ltlli/al , I I ,G,,(i) {Ianh(ilia)}+_( -1').') ..(' . .... ,lanl(l!a)-I;+·· -- ... -..
A,,(t}[1 -cxp: -2;.,,(I)I/a}l (j,(I) (/fll)

l· ic·\pl}i-;·,,(l)ll/al I ' JJ
x 1-, ,.,'! ,.I-cxp(-21!;a)1 .

;.,,(0[1 -cxp ,_;...II)/la, 1

+ --~-:'.'~ .....- [q~(1) (I-cxp( -"t/ia)'· -IJ
(/ja)(1 +cxpl -211/u): G,lt) . -"

[
" (,\,,(01'+1=, J

x 2's,,(' + I - -;--()'- cxp t: 1- ;.,,(lll l.'alS"t tanh (l/fu) ,
1'1) I

. (1m)' P,,(Ij}'+I' ",. cxp(-2tl/a)J. (I) =--_..... .._-- +"0 - 1')11 S I' + IJ------ .
.• 2/r ;."(t}:j,,,(I)+t} , - - " l+exp(-211/a)

(I .)Go(I)[", .,<' , I)' I I I' I" .,S' '[f' ()" "+ -I G'---- _I,I_'>oi + 1.101 Ila)-tiai-~·"t i;'" 'i +1
, (t)

exp!:i-j,,,(t)}I/al ( ]xc·...._--· ..,. ... I-exp( -2i/ia)'· tanh (tl/a) •
A,,(tJ[l-exp (-2;.,,(t)lial!' 1

(CI)

G I
, I \", tanh (Ira)

..(i) = (t /a),I-lanh(II/a), -250 ('-1 + 25"i .,---.-h"--I'-"
;.,,(1) 1.10 ,;.,,(t) la;

1'(1/0)[ I ] If' \1' I--,--()- 1- h" (I" exp \;.o(l)-I,/a.
A. i Ian .;... I) fa;
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G,{tl '" :1-tanhlrlal;[I[a-1S,!I" hI,. ,.]
A,,(ll tan ,1.,,(I)fa,

( , 1)[ I J I .- 2S"r+ -I_. 1- h" ( [ , """""'-rI exp(~/."IIj-I:[,<1J.
-v tan ,I." l)a, A" I,

G, 10 '" (Ira)(! +exp (-'!.Itul-tann (dial( I -exp (-~/(ia):I

, 7 '[" ' I 'S' lanh(/Ia) J-ll-exp(-~dla)i _S"r+ -- "I. hi' I I •
1.,,(11 tan ,1..,10 fa ..

s" "" _8 (!!..)'.
I-v Ita

, • { f I { l(//il) .}£:,,(11'" I..,{/) \-C)l.P, -21,,(t)//lld ---h-"'-r'" -1-1S"I' .I,m (/ HI

{
,WII) }

E",(l) '" 21([1<1)'-'\"("',;·-1 (1j[-cx.p(-2t/ja)}
I,\l\ \ t /<II

- A.,(I) cxp HA,,(I) -Ill/llnl -cxp ( - 2A,,(I)I!1I111 c:<'p (-:1+ ;,.,Wl/jal.

{
I +cxp( -21//11) }.

t-:,.(fl '" IWiI) h [I - \ -t-cxp( -2tl/ill -(28,,1' + I)p +c,~pl-211/u»).
Ian (I,ll)

rC3)

IC4)

(C5)

(C6)

(C7)


